LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of the morphological and fractal behavior at nanoscale of patterning lines by scratching in an atomic force microscope.

Photo from wikipedia

In this work, the topographical effect of the scratching trajectory and the feed direction on the formation of lithographed lines on the (001) InP surface was investigated using an atomic… Click to show full abstract

In this work, the topographical effect of the scratching trajectory and the feed direction on the formation of lithographed lines on the (001) InP surface was investigated using an atomic force microscope (AFM) tip-based nanomachining approach. Nanoscratching tests were carried out using the sharp face of a diamond AFM tip in contact mode. From the topographic maps obtained by AFM, several morphological and fractal parameters were obtained and analyzed. Surface morphology presented a surface smoothing for surfaces with scratches produced in [011] and [001] directions. The height parameters confirmed this behavior because scratches in [001] direction exhibited lower roughness. Moreover, this scratch direction promoted the height distribution most symmetrical and platykurtic. The other morphological parameters revealed that this direction provided a more irregular surface (smaller Smc and Sxp ), peak distribution, denser and pointed, smaller portion of material in the core, less deep furrows, higher spatial frequency components, and high isotropy. Fractal parameters revealed that FRE90 has the highest spatial complexity, it is dominated by higher spatial frequencies, and has the lowest surface percolation. Furthermore, all samples exhibited high topographic uniformity.

Keywords: direction; surface; morphological fractal; atomic force; force microscope

Journal Title: Microscopy research and technique
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.