LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Minocycline incorporated cobalt oxide nanoparticles in dental sealants: An in vitro study

Photo by ofisia from unsplash

The purpose of this study was to introduce antibacterial property to pits and fissure sealant (PFS) in order to mitigate the major clinical problems associated with PFS, such as microleakage… Click to show full abstract

The purpose of this study was to introduce antibacterial property to pits and fissure sealant (PFS) in order to mitigate the major clinical problems associated with PFS, such as microleakage and secondary caries. We prepared a pH reliant cobalt oxide nanoparticle incorporated with minocycline (MNC@CO) and characterized to investigate its antibacterial potential against Streptococcus sobrinus. The physiochemical, morphological, and drug release kinetics at different pH (7.4, 5.0, and 3.5) from nanoparticles were investigated. The MNC@CO were added at 2.5% and 5.0% into experimental PFS and characterized for their antibiofilm capacity, biocompatibility, and mechanical properties including compressive and flexural strength. The groups 2.5% and 5.0% has shown statistically significant antimicrobial capacity against S. sobrinus compared to control (p < .05). The highest percentage of MNC release at different pH (especially at pH 5.0 and 3.5) was observed from 5.0% MNC@CO doped PFS. The PFS doped with 2.5% MNC@CO showed a highest compressive strength (110 MPa) over a period of 70 days as compared to 5.0% MNC@CO (75 MPa) and control (80 MPa). The flexural strength of both experimental groups was lower for both time points (24 h and 30 days) than control. In conclusion, the present study found that 2.5% MNC@CO doped PFS showed considerable anti‐biofilm potential without compromising mechanical properties.

Keywords: cobalt oxide; pfs; minocycline incorporated; mnc; incorporated cobalt; study

Journal Title: Microscopy Research and Technique
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.