LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The forewing of a black cicada Cryptotympana atrata (Hemiptera, Homoptera: Cicadidae): Microscopic structures and mechanical properties

Photo from wikipedia

Insects in nature flap their wings to generate lift force and driving torque to adjust their attitude and control stability. An insect wing is a biomaterial composed of flexible membranes… Click to show full abstract

Insects in nature flap their wings to generate lift force and driving torque to adjust their attitude and control stability. An insect wing is a biomaterial composed of flexible membranes and tough veins. In this paper, we study the microscopic structures and mechanical properties of the forewing of the black cicada, Cryptotympana atrata. The thickness of the wing membranes and the diameter of veins varied from the wing root to the tip. The thickness of the wing membranes ranged from 6.0 to 29.9 μm, and the diameter of the wing veins decreased in a gradient from the wing root to the tip, demonstrating that the forewing of the black cicada is a nonuniform biomaterial. The elastic modulus of the membrane near the wing root ranged from 4.45 to 5.03 GPa, which is comparable to that of some industrial membranes. The microstructure of the wing vein exhibited a hollow tubular structure with flocculent structure inside. The “fresh” sample stored more water than the “dry” sample, resulting in a significant difference in the elastic modulus between the fresh and dried veins. The different membrane thicknesses and elastic moduli of the wing veins near the root and tip resulted in varied degrees of deformation on both sides of the flexion line of the forewing during twisting. The measurements of the forewing of the cicada may serve as a guide for selecting airfoil materials for the bionic flapping‐wing aircraft and promote the design and manufacture of more durable bionic wings in the future.

Keywords: structures mechanical; black cicada; cicada; forewing black; mechanical properties; microscopic structures

Journal Title: Microscopy Research and Technique
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.