LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tuning structural properties, morphology and magnetic characteristics of nanostructured Ni‐Co‐Fe/ITO ternary alloys by galvanostatic pretreatment process

Photo by firmbee from unsplash

In this research, the structural properties, surface morphology, and magnetic characteristics of nanostructured ternary ferromagnetic alloys grown by a cost‐effective and effortless two‐step electrochemical deposition method on indium tin oxide… Click to show full abstract

In this research, the structural properties, surface morphology, and magnetic characteristics of nanostructured ternary ferromagnetic alloys grown by a cost‐effective and effortless two‐step electrochemical deposition method on indium tin oxide (ITO) substrates with and without a galvanostatic pretreatment process (GPP) were examined. The GPP was applied at various pretreatment current densities (PCDs) such as −10, −20, and − 30 mA/cm2. The effect of the PCD on the Ni, Co, and Fe contents is found to be insignificant and all resultant Ni‐Co‐Fe thin films show an abnormal co‐deposition. The films have nano‐sized crystallites ranging from 17.3 to 19.6 nm and showed a face‐centered cubic structure with the [111] preferential growth. Compared to the non‐GPP applied Ni‐Co‐Fe film, growing the ternary Ni‐Co‐Fe film on ITO at the PCD of −30 mA/cm2 causes an improvement in the crystal quality and a reduction in the particle size from 150 ± 50 to 70 ± 20 nm. A decrement in the surface roughness and coercivity was also achieved by applying the GPP at the PCD of −30 mA/cm2, but the opposite is true for the GPP performed at the PCD of −10 mA/cm2. The GPP has an effect on the magnetic Squareness Ratio (SQR), but the influence of the PCD on the SQR parameter is negligible. The obtained findings reveal that the properties of the Ni‐Co‐Fe/ITO ternary alloys can be tuned through the GPP applied in various PCDs.

Keywords: pretreatment process; structural properties; galvanostatic pretreatment; characteristics nanostructured; morphology magnetic; magnetic characteristics

Journal Title: Microscopy Research and Technique
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.