LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Remediation of hexachlorobenzene-contaminated soils with alkyl glycoside-enhanced desorption and zero-valent iron-EDTA-air treatment.

Photo by sagredophotography from unsplash

In this work, the use of a coupled process, alkyl glycoside (APG) enhanced soil desorption followed by the zero-valent iron-ethylenediaminetetraacetic acid (EDTA)-air (ZEA) Fenton-like system, was investigated for the remediation… Click to show full abstract

In this work, the use of a coupled process, alkyl glycoside (APG) enhanced soil desorption followed by the zero-valent iron-ethylenediaminetetraacetic acid (EDTA)-air (ZEA) Fenton-like system, was investigated for the remediation of a simulated hexachlorobenzene (HCB)-contaminated diatomite soil and a real HCB-contaminated soil. Three surfactants with different concentrations were studied to obtain the suitable soil desorption agent. Compared with APG0810 and Triton x-100, APG0814 showed a better solubilization effect due to its lower critical micelle concentration. With addition of 3000 mg L-1 APG0814, 35% of HCB was removed from contaminated diatomite soil, and a small amount of residual APG in diatomite soil was found to be beneficial for the soil dispersion. After treatment with the ZEA system, the removal efficiency of HCB in the diatomite soil desorption solution reached 76% in 2 h; we observed that a small amount of APG retained in the desorption solution accelerated the HCB removal. A real HCB-contaminated soil was used to verify the remediation effects. This study demonstrates that our approach is a feasible alternative for remediating soil contaminated with hydrophobic organic compounds.

Keywords: hcb; alkyl glycoside; remediation; zero valent; desorption; soil

Journal Title: Journal of environmental quality
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.