LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparative limb bone scaling in turtles: Phylogenetic transitions with changes in functional demands?

Photo from wikipedia

Several terrestrial vertebrate clades include lineages that have evolved nearly exclusive use of aquatic habitats. In many cases, such transitions are associated with the evolution of flattened limbs that are… Click to show full abstract

Several terrestrial vertebrate clades include lineages that have evolved nearly exclusive use of aquatic habitats. In many cases, such transitions are associated with the evolution of flattened limbs that are used to swim via dorsoventral flapping. Such changes in shape may have been facilitated by changes in limb bone loading in novel aquatic environments. Studies on limb bone loading in turtles found that torsion is high relative to bending loads on land, but reduced compared to bending during aquatic rowing. Release from torsion among rowers could have facilitated the evolution of hydrodynamically advantageous flattened limbs among aquatic species. Because rowing is regarded as an intermediate locomotor stage between walking and flapping, rowing species might show limb bone flattening intermediate between the tubular shapes of walkers and the flattened shapes of flappers. We collected measurements of humeri and femora from specimens representing four functionally divergent turtle clades: sea turtles (marine flappers), softshells (specialized freshwater rowers), emydids (generalist semiaquatic rowers), and tortoises (terrestrial walkers). Patterns of limb bone scaling with size were compared across lineages using phylogenetic comparative methods. Although rowing taxa did not show the intermediate scaling patterns we predicted, our data provide other functional insights. For example, flattening of sea turtle humeri was associated with positive allometry (relative to body mass) for the limb bone diameter perpendicular to the flexion‐extension plane of the elbow. Moreover, softshell limb bones exhibit positive allometry of femoral diameters relative to body mass, potentially helping them maintain their typical benthic position in water by providing additional weight to compensate for shell reduction. Tortoise limb bones showed positive allometry of diameters, as well as long humeri, relative to body mass, potentially reflecting specializations for resisting loads associated with digging. Overall, scaling patterns of many turtle lineages appear to correlate with distinctive behaviors or locomotor habits.

Keywords: positive allometry; relative body; limb bone; bone; bone scaling

Journal Title: Journal of Morphology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.