This paper reports on newly developed ecomorphological models for the cervid intermediate phalanx. Using a geometric morphometric approach, we quantitatively assess the overall gracility of the bone, the depth and… Click to show full abstract
This paper reports on newly developed ecomorphological models for the cervid intermediate phalanx. Using a geometric morphometric approach, we quantitatively assess the overall gracility of the bone, the depth and concavity of the proximal articulation and the roundness and symmetry of the distal articulation in the intermediate phalanx, to establish relationships between morphology, locomotor behavior and environment. The morphology of the phalanx was found to vary along a gradient from gracile phalanges with shallow proximal articulations in forms adapted to yielding substrate, to robust phalanges with deeper proximal articulations in taxa adapted to firm substrate. Phylogeny and allometry are accounted for using regressions and phylogenetic comparative methods. Although the results indicate phylogeny explains part of the morphological variation, overall the shape of the intermediate phalanx appears mainly driven by differences in function. Consequently, this element promises to be a useful palaeoenvironmental proxy that can be applied on fossil assemblages with cervid remains.
               
Click one of the above tabs to view related content.