LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Light microscopic and heterogeneity analysis of astrocytes in the common marmoset brain.

Photo from wikipedia

Astrocytes are abundant cells of the central nervous system (CNS) and are involved in processes including synapse formation/function, ion homeostasis, neurotransmitter uptake, and neurovascular coupling. Recent evidence indicates that astrocytes… Click to show full abstract

Astrocytes are abundant cells of the central nervous system (CNS) and are involved in processes including synapse formation/function, ion homeostasis, neurotransmitter uptake, and neurovascular coupling. Recent evidence indicates that astrocytes show diverse molecular, structural, and physiological properties within the CNS. This heterogeneity is reflected in differences in astrocyte structure, gene expression, functional properties, and responsiveness to injury/pathological conditions. Deeper investigation of astrocytic heterogeneity is needed to understand how astrocytes are configured to enable diverse roles in the CNS. While much has been learned about astrocytic heterogeneity in rodents, much less is known about astrocytic heterogeneity in the primate brain where astrocytes have greater size and complexity. The common marmoset (Callithrix jacchus) is a promising non-human primate model because of similarities between marmosets and humans with respect to genetics, brain anatomy, and cognition/behavior. Here, we investigated the molecular and structural heterogeneity of marmoset astrocytes using an array of astrocytic markers, multi-label confocal microscopy, and quantitative analysis. We used male and female marmosets and found that marmoset astrocytes show differences in expression of astrocytic markers in cortex, hippocampus, and cerebellum. These differences were accompanied by intra-regional variation in expression of markers for glutamate/GABA transporters, and potassium and water channels. Differences in astrocyte structure were also found, along with complex interactions with blood vessels, microglia, and neurons. This study contributes to our knowledge of the cellular and molecular features of marmoset astrocytes and is useful for understanding the complex properties of astrocytes in the primate CNS.

Keywords: astrocytic heterogeneity; heterogeneity; analysis; marmoset; common marmoset; brain

Journal Title: Journal of neuroscience research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.