LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Elucidation of pathological mechanism caused by human disease mutation in CaMKIIβ

Photo from wikipedia

Recently, we have identified CaMKIIα and CaMKIIβ mutations in patients with neurodevelopmental disorders by whole exome sequencing study. Most CaMKII mutants have increased phosphorylation of Thr286/287, which induces autonomous activity… Click to show full abstract

Recently, we have identified CaMKIIα and CaMKIIβ mutations in patients with neurodevelopmental disorders by whole exome sequencing study. Most CaMKII mutants have increased phosphorylation of Thr286/287, which induces autonomous activity of CaMKII, using cell culture experiments. In this study, we explored the pathological mechanism of motor dysfunction observed exclusively in a patient with Pro213Leu mutation in CaMKIIβ using a mouse model of the human disease. The homozygous CaMKIIβ Pro213Leu knockin mice showed age‐dependent motor dysfunction and growth failure from 2 weeks after birth. In the cerebellum, the mutation did not alter the mRNA transcript level, but the CaMKIIβ protein level was dramatically decreased. Furthermore, in contrast to previous result from cell culture, Thr287 phosphorylation of CaMKIIβ was also reduced. CaMKIIβ Pro213Leu knockin mice showed similar motor dysfunction as CaMKIIβ knockout mice, newly providing evidence for a loss of function rather than a gain of function. Our disease model mouse showed similar phenotypes of the patient, except for epileptic seizures. We clearly demonstrated that the pathological mechanism is a reduction of mutant CaMKIIβ in the brain, and the physiological aspects of mutation were greatly different between in vivo and cell culture.

Keywords: mutation camkii; camkii; pathological mechanism; disease

Journal Title: Journal of Neuroscience Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.