LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Studies on the characteristics and mechanism of aerobic biodegradation of tetrabromobisphenol A by Irpex lacteus F17

The study investigated the characteristics of aerobic degradation of tetrabromobisphenol A (TBBPA) by Irpex lacteus F17 (I. lacteus F17) under four different cometabolic substrates (phenol, glucose, sodium pyruvate, and sodium… Click to show full abstract

The study investigated the characteristics of aerobic degradation of tetrabromobisphenol A (TBBPA) by Irpex lacteus F17 (I. lacteus F17) under four different cometabolic substrates (phenol, glucose, sodium pyruvate, and sodium citrate). The biodegradation of TBBPA by I. lacteus F17 could be enhanced via cometabolism, and glucose (8 g/L) was confirmed to be the optimum carbon source. For different initial solution pH ranging from 3.0 to 8.0, the results showed that I. lacteus F17 could be applied to biodegrade TBBPA in a wide pH range of 4.0–8.0, and the degradation rate could reach the maximum 75.31%, while the debromination rate reached the maximum 12.40% under pH 5.0. In addition, it has been confirmed that Mn2+ (50 μmol/L) could promote the secretion of manganese peroxidase and TBBPA biodegradation efficiency. Seven intermediates were identified by gas chromatography–mass spectrometry analysis, and the possible degradation pathways were proposed, which indicated the biodegradation of TBBPA might be subjected to debromination, β‐scission, hydroxylation, deprotonation, and oxidation reactions.

Keywords: biodegradation; irpex lacteus; tetrabromobisphenol; f17; lacteus f17

Journal Title: Journal of Basic Microbiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.