Bacterial blight (BB) of rice is a devastating disease caused by Xanthomonas oryzae pv. oryzae (Xoo). The evolution of new pathogenic races of bacterial blight pathogen is always a potential… Click to show full abstract
Bacterial blight (BB) of rice is a devastating disease caused by Xanthomonas oryzae pv. oryzae (Xoo). The evolution of new pathogenic races of bacterial blight pathogen is always a potential threat for rice production. The deployment of pathotype‐specific resistant genes in the host plants is a feasible strategy to develop BB‐resistant varieties. Therefore, continuous disease monitoring, identification of Xoo pathotypes, and their distribution are crucial to managing BB. In this study, 71 Xoo isolates were collected from the Godavari delta in Andhra Pradesh (India) and their virulence profiles on rice BB differentials were characterized. Data revealed that different International Rice Bacterial Blight (IRBB) lines with single BB resistance genes were susceptible to 73.2%–97.2% of the isolates, except IRBB13 (possessing BB resistance gene, xa13) which showed a moderately susceptible or susceptible reaction to 47.9% of the isolates. Three gene combination rice differentials like IRBB56 (Xa4 + xa5 + xa13), IRBB57 (Xa4 + xa5 + Xa21), IRBB58 (Xa4 + xa13 + Xa21), and IRBB59 (xa5 + xa13 + Xa21) showed very broad‐spectrum resistance to majority of the Xoo isolates from the region. None of the tested Xoo isolates were virulent on IRBB58 (Xa4 + xa13 + Xa21), IRBB60 (Xa4 + xa5 + xa13 + Xa21), and IRBB66 (Xa4 + xa5 + Xa7 + xa13 + Xa21). Based on the virulence reaction, 71 Xoo isolates were grouped into 10 major pathotypes. Highly virulent pathotypes viz., IXoPt # 14, 17, 19, and 22 can break the resistance of major BB‐resistant genes and were commonly distributed throughout the surveyed regions. Genotypic data of 71 Xoo isolates using J3 primer divided them into three major clusters. Cluster I consisted of 24 Xoo isolates that belonged to pathotype IXoPt‐19. Cluster II consisted of 41 Xoo isolates belonging to seven different pathotypes, and Cluster III was composed of six isolates from three different pathotypes. The findings of this study will be helpful to develop rice varieties with pathotype‐specific broad‐spectrum resistance against BB.
               
Click one of the above tabs to view related content.