In the present study, nonrhizobial endophytes were isolated from Pisum sativum and Cicer arietinum from Haryana, India. A total of 355 bacterial endophytes were screened for plant growth promoting traits.… Click to show full abstract
In the present study, nonrhizobial endophytes were isolated from Pisum sativum and Cicer arietinum from Haryana, India. A total of 355 bacterial endophytes were screened for plant growth promoting traits. Out of all, 96 bacterial endophytes were selected based on morphological characters and multi‐PGP traits, and their diversity analyzed by amplified ribosomal DNA restriction analysis. Based on their ARDRA profile, the 25 representative isolates (12 from P. sativum and 13 from C. arietinum), were selected and identified by 16S ribosomal DNA sequencing. Genetic relatedness based on BLAST analysis revealed the similarity of these isolates with members of three prominent phyla, that is, Proteobacteria, Firmicutes, and Actinobacteria. The dominant cluster, Firmicutes, constituted 60% of the isolates, assigned to four different genera, Bacillus, Staphylococcus, Ornithinibacillus, and Lysinibacillus. Phylum α‐proteobacteria included two genera, namely Paenochrobactrum and Ochrobactrum and three genera in phylum γ‐proteobacteria, namely Pseudomonas, Pantoea and Proteus. The phylum Actinobacteria was constituted of two genera, Microbacterium and Arthrobacter. Bacillus zhangzhouensis, Bacillus safensis, Arthrobacter enclensis from P. sativum and Bacillus haynesii, Paenochrobactrum sp. from C. arietinum are documented as plant growth promoting endophytic bacteria for the first time in the present study. The in vitro and in vivo assessment based on bonitur score revealed that the endophytic isolates Bacillus mojavensis PRN2, Pseudomonas chlororaphis PHN9, B. safensis PRER2, Pseudomonas sp. RCP1, Pseudomonas lini PRN1 and B. haynensii RCP3 from P. sativum and C. arietinum significantly enhanced the plant growth parameters. Therefore, these potential isolates can be further harnessed for preparation of bioformulations to enhance sustainable agriculture.
               
Click one of the above tabs to view related content.