LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of clinically relevant initiation and progression of tears within annulus fibrosus

Photo by flairman from unsplash

Internal disc disruption and annular tears are some of the causes of back and leg pain. It is difficult to observe location of internal damage and its distribution and propagation… Click to show full abstract

Internal disc disruption and annular tears are some of the causes of back and leg pain. It is difficult to observe location of internal damage and its distribution and propagation in cadaveric experiments or via imaging in clinical scenarios. Finite element analysis is useful for understanding the effects of different loading conditions on the location of initiation and propagation of tears in the annulus. In this study, a hyperelastic anisotropic material model in conjunction with biaxial properties was used for modelling annulus fibrosus material under a variety of loading conditions. The loading conditions considered included compression, flexion, extension, and their combinations. Tsai‐Wu criterion was used to evaluate the damage, considering strength anisotropy and asymmetry. Damage predictions based on this criterion are in better agreement with available experimental studies and clinical observations, as compared to other approaches. Therefore, the use of Tsai‐Wu criterion is suggested as an appropriate mechanical parameter to quantify damage, its initiation locations, and its distribution in annulus fibrosus under different loading conditions. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:113–122, 2017.

Keywords: initiation; annulus fibrosus; loading conditions; damage; prediction clinically

Journal Title: Journal of Orthopaedic Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.