LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Decontamination of rough implant surfaces colonized by multispecies oral biofilm by application of leukocyte-platelet rich fibrin.

Photo from wikipedia

BACKGROUND Decontamination of biofilm-infected rough implant surfaces is challenging. Platelet rich blood products have been shown to have anti-microbial properties against periodontal pathogens. Our aim was to investigate the effect… Click to show full abstract

BACKGROUND Decontamination of biofilm-infected rough implant surfaces is challenging. Platelet rich blood products have been shown to have anti-microbial properties against periodontal pathogens. Our aim was to investigate the effect of a potential biological implant surface disinfectant, leukocyte-platelet rich fibrin (L-PRF), on a mature oral multispecies biofilm on a rough titanium surface. METHODS SLA titanium disks were inoculated with subgingival dental plaque and cultured anaerobically for 21 days. The L-PRF membranes were collected from 12 donors in three trials (four donors in each trial). The disks were rinsed with 0.9% NaCl and exposed to the cell-rich portion of the L-PRF membranes for 48 hours followed by scanning electron microscope (SEM) analysis immediately or after rinsing with 0.9% NaCl prior to fixation. The presence of platelet factor-4 in the rinse samples was analyzed by Western blotting. Remaining bacteria were quantified from SEM images of the implant surfaces and their numbers statistically compared. RESULTS The L-PRF-treated samples without rinsing displayed numerous cells with multiple pseudopodia in immediate contact with bacteria that appeared perforated and increased in size. The cells were identified as platelets based on morphological criteria and by positive reaction for platelet factor-4 by Western blotting. After post-treatment rinsing, the L-PRF-treated disks displayed a significant reduction in bacterial counts (in average 92% reduction). CONCLUSION Application of L-PRF significantly reduced bacterial counts on contaminated SLA titanium surface, most likely through anti-microbial action by platelets. This article is protected by copyright. All rights reserved.

Keywords: rough implant; platelet rich; implant surfaces; leukocyte platelet; platelet; rich fibrin

Journal Title: Journal of periodontology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.