LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inhibitory mechanism of lactoferrin on antibacterial activity of oenothein B: isothermal titration calorimetry and computational docking simulation.

Photo from wikipedia

BACKGROUND Many foods contain proteins and polyphenols, but there is a poor understanding of the nature of the inhibitory effect of protein on the biologic activity of polyphenols. The inhibitory… Click to show full abstract

BACKGROUND Many foods contain proteins and polyphenols, but there is a poor understanding of the nature of the inhibitory effect of protein on the biologic activity of polyphenols. The inhibitory mechanism of the food protein lactoferrin on the antibacterial activity of oligomeric ellagitannin oenothein B (OeB) was investigated using fluorescence quenching, isothermal titration calorimetry (ITC), circular dichroism (CD) measurement and molecular docking. RESULTS The antibacterial activity of OeB against S. aureus was inhibited by lactoferrin, which was retained at about 60%. An interaction study revealed that an interaction occurred between OeB and lactoferrin. Thermodynamic analyses indicate that the binding process was spontaneous, and the main driving forces were based on electrostatic interactions that contributed to a high interaction affinity between OeB and lactoferrin. Furthermore, circular dichroism spectra provided insights into conformational changes of lactoferrin. Finally, molecular docking analysis provided a visual representation of a single binding site where OeB interacted with specific amino acid residues located at the active site of lactoferrin. In particular, due to the unique macrocyclic structure and rigid ring structure of OeB, a small number of hydroxyl groups in the rigid structure of OeB interacted with the amino acid of lactoferrin while most of the phenolic hydroxyl groups were not associated with lactoferrin. CONCLUSION Our study provides a theoretical basis for the use of OeB as an antibacterial substance that can be used in nutraceuticals and pharmaceutical products. This article is protected by copyright. All rights reserved.

Keywords: inhibitory mechanism; isothermal titration; antibacterial activity; lactoferrin antibacterial; activity

Journal Title: Journal of the science of food and agriculture
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.