LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Physiological role of silicon in radish seedlings under ammonium toxicity.

Photo from wikipedia

BACKGROUND High concentrations of ammonium as the sole nitrogen source may result in physiological and nutritional disorders that can lead to reduced plant growth and toxicity. In this study, we… Click to show full abstract

BACKGROUND High concentrations of ammonium as the sole nitrogen source may result in physiological and nutritional disorders that can lead to reduced plant growth and toxicity. In this study, we hypothesized that ammonium toxicity in radish seedlings (Raphanus sativus L.) might be mitigated by the incorporation of silicon (Si) into applied nutrient solution. To examine this possibility, we conducted a hydroponic experiment to evaluate the effects of five concentrations of ammonium (1, 7.5, 15, 22.5, and 30 mmol L-1 ) on the photosynthesis, green color index, stomatal conductance, transpiration, instantaneous water-use efficiency, and biomass production of radish in the absence and presence (2 mmol L-1 ) of Si. The experimental design was a randomized block design based on a 2 × 5 factorial scheme with four replicates. RESULTS The highest concentration of applied ammonium (30 mmol L-1 ) was found to reduce the photosynthesis, transpiration and total dry biomass of radish seedlings, independent of the presence of Si in the nutrient solution. However, at lower ammonium concentrations, the application of Si counteracted these detrimental effects, and facilitated the production of seedlings with increased photosynthesis, greater instantaneous water-use efficiency, and higher total dry biomass compared with the untreated plants (without Si). Transpiration and stomatal conductance were affected to lesser extents by the presence of Si. CONCLUSION These findings indicate that the addition of Si to nutrient solutions could provide an effective means of alleviating the unfavorable effects induced by ammonium toxicity at concentrations of less than 30 mmol L-1 . This article is protected by copyright. All rights reserved.

Keywords: physiological role; radish seedlings; toxicity; ammonium; silicon; ammonium toxicity

Journal Title: Journal of the science of food and agriculture
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.