LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dietary medium-chain 1-monoglycerides modulates the community and function of cecal microbiota of broilers.

Photo from wikipedia

BACKGROUND Medium-chain monoglycerides (MG) are a group of 1-monoglycerides of medium-chain fatty acids with strong antibacterial activity, which may influence the gut microbiota in the diet of broilers. The present… Click to show full abstract

BACKGROUND Medium-chain monoglycerides (MG) are a group of 1-monoglycerides of medium-chain fatty acids with strong antibacterial activity, which may influence the gut microbiota in the diet of broilers. The present study evaluated the effects of mixed MG on the community and function of gut microbiota in broilers. A total of 528 newly hatched male yellow feathered broiler chicks were weighed and randomly assigned into four groups, including a basal diet (CON), a basal diet containing 300 mg kg-1 MG (MG300), 450 mg kg-1 MG (MG450), or 600 mg kg-1 MG (MG600). RESULTS The cecal acetic acid, propionic acid, butyric acid, isobutyric acid, isovaleric acid and total short-chain fatty acid of broilers in the MG-containing groups were notably increased compared with CON group. Dietary MG selectively increased the relative abundance of Bifidobacteriaceae, Bacteroides and an unclassified genus of Lachnospiraceae family, but decreased the proportion of an unclassified genus of Barnesiellaceae and a norank genus of Flavobacteriaceae family in the cecum of broilers. Functional prediction revealed that MG supplementation enriched the microbial gene abundance of amino acid metabolism and carbohydrate metabolism, while depleted the gene abundance of fat metabolism and energy metabolism. Moreover, the modulation of gut microbiota by MG supplementation was closely correlated with the alteration of muscle amino acids. CONCLUSION Dietary MG altered the gut microbiota community structure and metabolites, and modulated the gene abundance of microbial metabolism pathways in the cecum of broilers, which may further influence the growth performance, nutrient utilization and meat quality of the host. This article is protected by copyright. All rights reserved.

Keywords: chain; microbiota; community; medium chain; acid

Journal Title: Journal of the science of food and agriculture
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.