LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Locust bean milling-derived dust as a raw material for the development of biodegradable bioplastics with antioxidant activity.

Photo from wikipedia

BACKGROUND Non-value agrifood byproducts are rich in biomolecules such as proteins and polysaccharides, and possess film-forming ability, motivating their use in the development of biodegradable plastics. This work studied the… Click to show full abstract

BACKGROUND Non-value agrifood byproducts are rich in biomolecules such as proteins and polysaccharides, and possess film-forming ability, motivating their use in the development of biodegradable plastics. This work studied the feasibility of using locust bean milling-derived dust (LBMD) as a source of biomolecules suitable for developing biodegradable plastics. RESULTS LBMD is composed of 56% protein, 28% carbohydrate, 10% moisture, 6% lipid, and 2% ash. In addition, phenolic compounds are also present. The carbohydrates are mainly composed by (1→4)-Man, (1→4,6)-Man, and t-Gal glycosidic linkages. Depending on the LBMD concentration used, when employed in casting biodegradable plastics, LBMD yields transparent yellowish bioplastics with 90% elongation at break and surface water contact angles ranging from 60° to 90°. Additionally, LBMD-based bioplastics display antioxidant activity, inhibiting cationic ABTS radicals up to 61% in just 24 h. LBMD-based bioplastics are disintegrated when incubated on the soil surface for 34 weeks, perhaps acting as a soil nutrient. CONCLUSION LBMD represents a potential source of biomolecules for producing transparent, flexible, water tolerant, antioxidant, and biodegradable bioplastics, opening up opportunities to implement a novel circular strategy to valorize this locust bean industry byproduct. This article is protected by copyright. All rights reserved.

Keywords: derived dust; locust bean; bean milling; development biodegradable; bean; milling derived

Journal Title: Journal of the science of food and agriculture
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.