LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Physicochemical properties and transcriptional changes underlying the quality of 'Gala' apples (Malus × domestica Borkh.) under atmosphere manipulation in long-term storage.

Photo from wikipedia

BACKGROUND The year-round availability of apples (Malus × domestica Borkh.) depends on post-harvest technologies, which are essential for the retention of fruit sensory and chemical properties by delaying senescence. The… Click to show full abstract

BACKGROUND The year-round availability of apples (Malus × domestica Borkh.) depends on post-harvest technologies, which are essential for the retention of fruit sensory and chemical properties by delaying senescence. The effectiveness of strategies for preserving the quality of apples depends on complex interactions between the storage environment and endogenous biological factors. In the current work, we integrated instrumental, sensory, and transcriptional data to determine the role of conservation technologies cold storage, controlled atmosphere, and 1-methylcyclopropene-mediated ethylene blockage on the long-term conservation of apples. RESULTS The results demonstrated that inhibition of the consumer's perception of the apples' ethylene content is essential for long-term cold storage, and such quality conservation can be achieved by reducing oxygen pressure. Overall appreciation of apples after storage was determined mainly by their texture, with crispness and juiciness contributing favorably, and mealiness contributing negatively. Reduced oxygen pressure and inhibition of ethylene perception exerted distinct effects on the transcription of candidate genes associated with ripening in apple. Hexose and cell-wall carbohydrate metabolism genes exhibit distinct expression patterns under storage. CONCLUSION Inhibition of ethylene perception and reduction of relative oxygen pressure under cold storage both promote similar conservation of apple sensory traits under long-term cold storage. Texture was the main contributor to global appreciation of apples subjected to long-term storage. The conditions that were investigated were able to delay, but not fully prevent, senescence, as evidenced by physicochemical and gene expression analyses. The expression of gene-encoding enzymes involved in hexose metabolism was mainly developmentally regulated, whereas storage conditions exerted a stronger effect on the expression of genes associated with cell-wall metabolism. © 2022 Society of Chemical Industry.

Keywords: long term; quality; apples malus; malus domestica; storage

Journal Title: Journal of the science of food and agriculture
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.