LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Apple Polyphenol Biotransformation using Probiotics in Vitro and Dynamic Simulated Digestion by Bionic Rats.

Photo by miracleday from unsplash

BACKGROUND The present study investigated the effects of fermentation by Lactobacillus rhamnosus zrx01 (LR-zrx01), Lactobacillus acidophilus zrx02 (LA-zrx02), and Lactobacillus plantarum zrx03 (LP-zrx03) as well as dynamic simulated digestion by… Click to show full abstract

BACKGROUND The present study investigated the effects of fermentation by Lactobacillus rhamnosus zrx01 (LR-zrx01), Lactobacillus acidophilus zrx02 (LA-zrx02), and Lactobacillus plantarum zrx03 (LP-zrx03) as well as dynamic simulated digestion by bionic rats on the biotransformation and antioxidant potential of apple polyphenols. The polyphenol was determined by UPLC-MS, and the dynamic simulated digestion of fermented apple pulp was determined by bionic rats, the antibacterial and antioxidant activities were analyzed. RESULTS The polyphenol content of apple pulp fermented using the three strains was respectively 1.41, 1.38, and 1.36 times that of non-fermented pulp. The antibacterial activity of apple pulp improved dramatically after fermentation. Moreover, the antioxidant potential of apple pulp increased after fermentation and digestion. After dynamic simulated digestion by bionic rats, the polyphenol content in unfermented and the three fermented groups increased significantly by 1.19, 1.23, 1.20, and 1.19 times than that before digestion, respectively. The major polyphenols in each group with obvious changes were epicatechin, rutin, kaempferol, quercetin-3 galactoside, p-coumaric acid, and two unknown substances, 1 and 2. CONCLUSION Therefore, fermented and digested apple polyphenols showed better biotransformation effects and mostly existed in the form of small molecules, which was conducive to the improvement of polyphenol bioavailability and beneficial to the absorption of active substances by the human body. These findings build a foundation for the development of functional food beverages. This article is protected by copyright. All rights reserved.

Keywords: simulated digestion; bionic rats; apple; digestion bionic; digestion; dynamic simulated

Journal Title: Journal of the science of food and agriculture
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.