LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Crystalline, thermal and swelling properties of starches from single-segment substitution lines with different Wx alleles in rice (Oryza sativa L.).

Photo from wikipedia

BACKGROUND In rice, five common Wx alleles, wx, Wxt , Wxg1 , Wxg2 and Wxg3 , have been identified according to their apparent amylose content (AAC) phenotypes. Previous studies revealed… Click to show full abstract

BACKGROUND In rice, five common Wx alleles, wx, Wxt , Wxg1 , Wxg2 and Wxg3 , have been identified according to their apparent amylose content (AAC) phenotypes. Previous studies revealed that this Wx allelic variation may also affect other starch properties. However, so far, to what extent the five Wx alleles influence the crystalline structure, thermal and swelling properties of rice starch is still unclear. For this purpose, a set of single-segment substitution lines (SSSLs) harboring five different Wx alleles, varying widely in AAC, was used for comparative studies. RESULTS The crystalline structure, thermal properties and swelling behavior of starches from the SSSLs varied widely depending on Wx genotype. Effects of different Wx alleles on relative crystallinity followed the order wx > Wxt > Wxg1 = Wxg2 > Wxg3 . The glutinous and Wxt genotype starches showed higher gelatinization temperatures and enthalpy compared with other Wx genotypes. The order for swelling power was wx > Wxt > Wxg1 > Wxg2 > Wxg3 , while the order for degree of solubility was Wxg3 > Wxg1 > Wxg2 > Wxt = wx. Correlation analysis indicated that AAC was significantly and negatively correlated with relative crystallinity (r = -0.996, P < 0.01) and swelling power (r = -0.982, P < 0.01). CONCLUSION The present results provide new knowledge about the influence of different Wx alleles on the structural and physicochemical properties of rice starch. © 2016 Society of Chemical Industry.

Keywords: segment substitution; single segment; different alleles; wxg1 wxg2; swelling properties; thermal swelling

Journal Title: Journal of the science of food and agriculture
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.