LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Using the breakage matrix approach for monitoring the break release in the wheat flour milling process.

Photo from wikipedia

BACKGROUND The breakage matrix approach is a mathematical tool to relate input and output particle size distribution from a milling operation. Adjustment of the break release in the flour milling… Click to show full abstract

BACKGROUND The breakage matrix approach is a mathematical tool to relate input and output particle size distribution from a milling operation. Adjustment of the break release in the flour milling process is extremely important because it affects granulation and quality characteristics of the stock and hence the total results and balance of the mill. In this study the breakage matrix approach has been used for the purpose of controlling the release on the front passages of the break system in the flour milling process. RESULTS It has been established that, for any particle size distribution of wheat, it is possible to predict break releases together with the distribution of the release size fractions by using the breakage matrices. Also, the reversibility of this approach is examined, that is the possibility to identify the wheat particle size distribution that would result in desired break releases and/or the desired yields of different sized intermediate stocks under the given set of milling conditions. CONCLUSION It is confirmed that the breakage matrix approach can be successfully used to predict the break releases. The reverse breakage matrix concept allows the determination of the wheat particle size distribution which would result in a targeted break release. © 2016 Society of Chemical Industry.

Keywords: milling; breakage; matrix approach; break; breakage matrix

Journal Title: Journal of the science of food and agriculture
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.