LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigating inhibitory activity of novel synthetic sericin peptide on α-D-glucosidase: kinetics and interaction mechanism study using a docking simulation.

Photo by boxedwater from unsplash

BACKGROUND We synthesised a novel sericin peptide (SP-GI) with α-d-glucosidase inhibitory activity, which has a sequence of SEDSSEVDIDLGN. The kinetics of its peptide-induced inhibition on α-d-glucosidase activity and its interaction… Click to show full abstract

BACKGROUND We synthesised a novel sericin peptide (SP-GI) with α-d-glucosidase inhibitory activity, which has a sequence of SEDSSEVDIDLGN. The kinetics of its peptide-induced inhibition on α-d-glucosidase activity and its interaction mechanism merging with molecular docking were both investigated. RESULTS SP-GI exhibited significant inhibitory activity with an IC50 of 2.9 ± 0.1 µmol L-1 and this inhibition was reversible and non-competitive with a Ki value of 1.0 ± 0.1 µmol L-1 . An interaction study with SP-GI revealed it bound to α-d-glucosidase at a single binding site, resulting in alterations in α-d-glucosidase secondary structure. This led to quenching of intrinsic α-d-glucosidase fluorescence by a static quenching mechanism. Molecular docking results showed that the SP-GI binding site on α-d-glucosidase differed from acarbose, with hydrogen bonding and van der Waals forces being the main binding drivers. CONCLUSION These findings suggest the potential use for SP-GI or other natural sericin peptides as dietary supplements for the treatment of type 2 diabetes. © 2017 Society of Chemical Industry.

Keywords: mechanism; sericin peptide; interaction; glucosidase; inhibitory activity; activity

Journal Title: Journal of the science of food and agriculture
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.