LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exogenous trehalose enhanced the biocontrol efficacy of Hanseniaspora uvarum against grape berry rots caused by Aspergillus tubingensis and Penicillium commune.

Photo by imwilliamwilliams from unsplash

BACKGROUND Primarily, chemical pesticides are commonly used to control preharvest and postharvest diseases of fruits and vegetables. However, there is strong public concern regarding the human and environmental health problems… Click to show full abstract

BACKGROUND Primarily, chemical pesticides are commonly used to control preharvest and postharvest diseases of fruits and vegetables. However, there is strong public concern regarding the human and environmental health problems that might emanate from the residues of these chemical pesticides. As a result, biocontrol is often preferred due to its safety for humans and animals. The microbial antagonists employed often encounter variable climatic conditions, which affect their efficacy. In this study, the biocontrol efficacy of Hanseniaspora uvarum enhanced with trehalose against Aspergillus tubingensis and Penicillium commune in grapes was investigated. RESULTS H. uvarum Y3 pretreated with 2.0% w/v trehalose in nutrient yeast dextrose broth (NYDB) before used significantly inhibited the incidence of decay and lesion diameter without affecting the sensory qualities of the grapes stored at either 4 °C or 20 °C. There was also a significant (P < 0.05) increase in the population dynamics of H. uvarum that was pretreated with 2% trehalose compared to that of H. uvarum alone. The in vitro assay on spore germination revealed an inhibition of A. tubingensis and P. commune by 85.6% and 87.0% respectively. Scanning electron microscopy results showed that both untreated H. uvarum and H. uvarum pre-treated with the 2% w/v trehalose before use inhibited fungal mycelium and development of grape rot. CONCLUSION The biocontrol efficacy of H. uvarum was enhanced against grape rot caused by A. tubingensis and P. commune. The findings indicate the potential applicability of trehalose in the enhancement of H. uvarum. © 2018 Society of Chemical Industry.

Keywords: tubingensis; grape; efficacy hanseniaspora; efficacy; biocontrol; biocontrol efficacy

Journal Title: Journal of the science of food and agriculture
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.