LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of NaHCO3 treatments on the activity of cell-wall-degrading enzymes produced by Penicillium digitatum during the pathogenesis process on grapefruit.

Photo by madhatterzone from unsplash

BACKGROUND This study was performed to clarify the strategies of Penicillium digitatum during pathogenesis on citrus, assessing, on albedo plugs, the effects of treatment with sodium bicarbonate (NaHCO3 ), at… Click to show full abstract

BACKGROUND This study was performed to clarify the strategies of Penicillium digitatum during pathogenesis on citrus, assessing, on albedo plugs, the effects of treatment with sodium bicarbonate (NaHCO3 ), at two different pH values (5 and 8.3), on cell-wall-degrading enzyme activity over a period of 72 h. RESULTS Treatment with NaHCO3 , under alkaline pH, delayed the polygalacturonase activity for 72 h, or 48 h in the case of the pectin lyase, compared with the control or the same treatment at pH 5. In contrast, pectin methyl esterase activity rapidly increased after 24 h, in plugs dipped in the same solution. In this case, the activity remained higher than untreated or pH 5-treated plugs up to 72 h. CONCLUSION The rapid increase in pectin methyl esterase activity under alkaline conditions is presumably the strategy of the pathogen to lower the pH, soon after the initiation of infection, in order to restore an optimal environment for the subsequent polygalacturonase and pectin lyase action. In fact, at the same time, a low pH delayed the enzymatic activity of polygalacturonase and pectin lyase, the two enzymes that actually cleave the α-1,4-linkages between the galacturonic acid residues. © 2018 Society of Chemical Industry.

Keywords: digitatum pathogenesis; wall degrading; pectin; penicillium digitatum; cell wall; activity

Journal Title: Journal of the science of food and agriculture
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.