LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The influence of copper levels on in vitro ruminal fermentation, bacterial growth and methane production.

Photo by austriannationallibrary from unsplash

BACKGROUND Copper (Cu) is an essential microelement to the health and proper functioning of metabolic processes in animals, but the particular function of Cu in fermentation processes and the formation… Click to show full abstract

BACKGROUND Copper (Cu) is an essential microelement to the health and proper functioning of metabolic processes in animals, but the particular function of Cu in fermentation processes and the formation of methane (CH4 ) in the rumen have been poorly analyzed. The innovative aspect of this study was to investigate the effects of high doses of Cu as copper sulfate on in vitro ruminal degradation, fermentation patterns, and CH4 production. RESULTS There was a decrease (P < 0.04) on in vitro dry matter (DM) and organic matter degradability from 60 to 100 µg Cu/g DM. Ammonia concentration decreased drastically with increasing Cu levels (linear effect, P < 0.01). Total bacteria and volatile fatty acids (quadratic effect, P < 0.02) were reduced with 80 and 100 µg Cu/g DM. Methane production (milliliters per gram digestible organic matter) was decreased when dosages of Cu were increased (linear effect, P < 0.003). CONCLUSION Overall, the addition of increasing levels of Cu to 40 µg Cu/g DM did not have an adverse impact on ruminal bacteria growth and decreased CH4 production, without affecting the ruminal kinetics. © 2018 Society of Chemical Industry.

Keywords: production; methane production; fermentation; copper; vitro ruminal

Journal Title: Journal of the science of food and agriculture
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.