LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of terpenes and turpentines using gas chromatography with vacuum ultraviolet detection.

Photo by norevisions from unsplash

The separation and identification of natural mixtures of terpenes is challenging and laborious. A gas chromatographic method based on vacuum ultraviolet spectroscopic detection, which is characterized by full-scan absorption in… Click to show full abstract

The separation and identification of natural mixtures of terpenes is challenging and laborious. A gas chromatographic method based on vacuum ultraviolet spectroscopic detection, which is characterized by full-scan absorption in the range of 125-240 nm, was developed and applied to analyze terpenes. In this study, the vacuum ultraviolet absorption spectra of 41 different standard terpenes were investigated and compared. The spectra were found to be highly featured and easily differentiated. Several commercial turpentine samples were analyzed and the vacuum ultraviolet detector demonstrated good specificity for qualitative identification of constituent terpenes. A total of 31 terpenes were detected in the four turpentine samples. α-Pinene was the predominant terpene ranging from 744.2 ± 9.7 to 917 ± 21 mg/mL. The other major constituents in the turpentines included β-pinene, δ-3-carene, camphene, and p-isopropyltoluene. Deconvolution of co-eluting signals of terpenes was achieved utilizing the data analysis software. The technique has been demonstrated to be a powerful tool for reliable and accurate qualitative and quantitative analysis of terpenes from complex natural mixtures.

Keywords: detection; terpenes turpentines; vacuum ultraviolet; analysis; gas; analysis terpenes

Journal Title: Journal of separation science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.