LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Room temperature fabrication of magnetic covalent organic frameworks for analyzing sulfonamide residues in animal-derived foods.

Photo by itfeelslikefilm from unsplash

A magnetic solid phase extraction method based on magnetic covalent organic frameworks (TpBD@Fe3 O4 ) combined with high performance liquid chromatography has been developed to detect the sulfonamides including sulfadiazine,… Click to show full abstract

A magnetic solid phase extraction method based on magnetic covalent organic frameworks (TpBD@Fe3 O4 ) combined with high performance liquid chromatography has been developed to detect the sulfonamides including sulfadiazine, sulfamerazine, sulfamethazine and sulfamethoxazole in milk and meat. TpBD@Fe3 O4 were synthesized at room temperature under mild reaction conditions with a simple and rapid operation. The TpBD@Fe3 O4 exhibited higher extraction efficiency because of the π-π and electrostatic interactions between the benzene ring structure of the TpBD and the SA molecules. The extraction conditions including the dosage of adsorbents, the type and dosage of eluent, the elution time and the pH of the sample solution were fully optimized. The detection results showed good linearity over a wide range (50-5×104 ng/mL) and low detection limits (3.39-5.77 ng/mL) for the SA targets. The practicability of this MSPE-HPLC method was further evaluated by analyzing milk and meat samples, with recoveries of the targets of 71.6%-110.8% in milk and 71.9%-109.7% in pork. The successful detection of SAs residues has demonstrated the TpBD@Fe3 O4 excellent practical potential for analyzing pharmaceutical residues in animal-derived foods. This article is protected by copyright. All rights reserved.

Keywords: tpbd fe3; magnetic covalent; organic frameworks; covalent organic; room temperature; residues animal

Journal Title: Journal of separation science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.