LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enantioseparation and dissipation of acephate and its highly toxic metabolite methamidophos in pakchoi by supercritical fluid chromatography tandem mass spectrometry.

Photo from wikipedia

Acephate is widely used in crops as racemate. However, the enantioselective dissipation of acephate enantiomers has not been investigated in pakchoi. A sensitive and effective approach was established for determining… Click to show full abstract

Acephate is widely used in crops as racemate. However, the enantioselective dissipation of acephate enantiomers has not been investigated in pakchoi. A sensitive and effective approach was established for determining residues of acephate and its highly toxic metabolite methamidophos enantiomers by supercritical fluid chromatography tandem mass spectrometry. Baseline separations for their enantiomers were achieved by using a Chiralcel OD-H column. The optimal chromatographic conditions were obtained as follows: CO2 /ethanol (95/5) as mobile phase; flow rate, 3.0 mL/min; column temperature, 40°C. The mean recoveries (RSDs) of analytes were in the range of 77%-83.1% (6.1%-9.9%), 75.4%-87.5% (9.3%-13.2%), and 81.5%-84.2% (7.1%-13.4%) at three fortification levels (0.005, 0.05, and 0.5 mg/kg for each enantiomer) for interday assay (n = 18). The method was used to evaluate the enantioselective dissipation of acephate and methamidophos in pakchoi. S-acephate dissipated faster than R-acephate, while the concentration of R-methamidophos was higher than that of S-methamidophos during the entire study period. The results indicated that the R-enantiomer of acephate and methamidophos was preferentially enriched in pakchoi. The established analysis approach and the study data provided useful information for the rational use of acephate in agriculture. This article is protected by copyright. All rights reserved.

Keywords: dissipation acephate; acephate highly; highly toxic; acephate; methamidophos

Journal Title: Journal of separation science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.