Highly crosslinked monolithic capillary columns with inner diameters in the range of 50-530 μm were prepared by radical polymerization of pentaerythritol tetraacrylate, polyhedral oligomeric silsesquioxane-methacrylate, and n-octadecyl methacrylate in the presence… Click to show full abstract
Highly crosslinked monolithic capillary columns with inner diameters in the range of 50-530 μm were prepared by radical polymerization of pentaerythritol tetraacrylate, polyhedral oligomeric silsesquioxane-methacrylate, and n-octadecyl methacrylate in the presence of methanol, dodecyl alcohol, and polyethyleneglycol lauryl ether. Columns were evaluated by inverse size-exclusion chromatography employing a set of polystyrene standards of narrow molecular-size distribution and by scanning electron microscopy. Chromatographic performance under reversed-phase conditions was also evaluated. The combination of two effective crosslinkers as pentaerythritol tetraacrylate and polyhedral oligomeric silsesquioxane-methacrylate in the polymerization mixture allows for the preparation of robust and efficient monolithic capillary columns within a fairly wide range of internal diameters. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.