LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of monolithic capillary columns with inner diameter 50-530 μm employing a mixture of pentaerythritol tetraacrylate and polyhedral oligomeric silsesquioxane-methacrylate as crosslinkers.

Photo by gabriel_meinert from unsplash

Highly crosslinked monolithic capillary columns with inner diameters in the range of 50-530 μm were prepared by radical polymerization of pentaerythritol tetraacrylate, polyhedral oligomeric silsesquioxane-methacrylate, and n-octadecyl methacrylate in the presence… Click to show full abstract

Highly crosslinked monolithic capillary columns with inner diameters in the range of 50-530 μm were prepared by radical polymerization of pentaerythritol tetraacrylate, polyhedral oligomeric silsesquioxane-methacrylate, and n-octadecyl methacrylate in the presence of methanol, dodecyl alcohol, and polyethyleneglycol lauryl ether. Columns were evaluated by inverse size-exclusion chromatography employing a set of polystyrene standards of narrow molecular-size distribution and by scanning electron microscopy. Chromatographic performance under reversed-phase conditions was also evaluated. The combination of two effective crosslinkers as pentaerythritol tetraacrylate and polyhedral oligomeric silsesquioxane-methacrylate in the polymerization mixture allows for the preparation of robust and efficient monolithic capillary columns within a fairly wide range of internal diameters. This article is protected by copyright. All rights reserved.

Keywords: methacrylate; monolithic capillary; pentaerythritol tetraacrylate; polyhedral oligomeric; capillary columns; tetraacrylate polyhedral

Journal Title: Journal of separation science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.