Antimicrobial agents are essential to protect human and animal health. During the COVID-19 pandemic, antimicrobials such as cephalosporins were widely used as prophylactics and to prevent bacterial co-infection. Undoubtedly, the prevalence… Click to show full abstract
Antimicrobial agents are essential to protect human and animal health. During the COVID-19 pandemic, antimicrobials such as cephalosporins were widely used as prophylactics and to prevent bacterial co-infection. Undoubtedly, the prevalence of antibiotics in the aquatic environment will ultimately affect the degree of resistance against these bacteria in animals and the environmental systems. In order to monitor sixteen cephalosporins in the aquatic environment, we developed a new LC-MS/MS method that functioned simultaneously under positive and negative ESI switching modes. The chromatographic separation has been implemented using a pentafluorophenyl propyl column kept at 40°C. The limits of detection and quantitation for the studied cephalosporins ranged from (8 × 10-4 ) to (7.11 × 10-2 ) ng/mL and from (2.61 × 10-3 ) to (2.37 × 10-1 ) ng/mL, respectively. The percent extraction efficiency (apparent recovery) and relative standard deviations for the analyzed cephalosporins ranged from 61.69 to 167.67% and 2.45 to 13.48%, respectively. The overall findings showed that the effluent from the wastewater treatment plants that receive wastewater from pharmaceutical factories had a higher detected amount of cephalosporins than that of domestic sewage. Moreover, seven cephalosporins, including cefuroxime, ceftazidime, cefradine, cefprozil, cefixime, cefalexin, and cefadroxil (0.68-105.45 ng/L) were determined in the aquatic environment. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.