LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of the chemical constituents and metabolic profile of Polygonum cuspidatum Sieb. et Zucc. in rat plasma, urine, and feces by ultra-high performance liquid chromatography coupled with Quadrupole-Exactive Orbitrap mass spectrometry.

Photo from wikipedia

Polygonum cuspidatum Sieb. et Zucc. is a traditional and popular Chinese medicine with a wide spectrum of pharmacological effects such as anti-bacterial, anti-inflammatory, and anti-tumor activities together with other health… Click to show full abstract

Polygonum cuspidatum Sieb. et Zucc. is a traditional and popular Chinese medicine with a wide spectrum of pharmacological effects such as anti-bacterial, anti-inflammatory, and anti-tumor activities together with other health effects like lowering lipids, preventing diabetes, and regulating the immune system. It is of great significance to explore the complex chemical constituents and metabolic process of Polygonum cuspidatum in vivo to further clarify the effective substances. However, studies on its metabolism in vivo were not comprehensive in previous literature. In this study, ultra-high performance liquid chromatography coupled with Quadrupole-Exactive Orbitrap mass spectrometry was used to comprehensively identify the chemical constituents in Polygonum cuspidatum and further analyze its metabolic profile in rats. Compared with reference substances, various databases, and literature retrieval, 62 compounds were inferred from the Polygonum cuspidatum extract. Furthermore, a total of 119 compounds, including 44 prototype compounds and 75 metabolites, were annotated in rat plasma, urine, and feces. The main metabolic pathways of Polygonum cuspidatum in rats included hydrogenation reduction, hydroxylation, dehydration, methylation, sulfation, and glucuronidation. This is the first systematic study on the chemical constituents of Polygonum cuspidatum and its metabolic profile in vivo, which contributes to finding its bioactive components and seeking its therapeutic targets.

Keywords: cuspidatum; metabolic profile; polygonum cuspidatum; chemical constituents

Journal Title: Journal of separation science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.