LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An efficient isolation and purification of broad partition coefficient range ginsenosides from roots of Panax quinquefolium L. by linear gradient counter-current chromatography coupled with preparative HPLC.

Photo by codioful from unsplash

As famous health food, roots of Panax quinquefolium L. possessed immune regulation and enhancement of the central nervous system, in which ginsenosides are the main active component with different numbers… Click to show full abstract

As famous health food, roots of Panax quinquefolium L. possessed immune regulation and enhancement of the central nervous system, in which ginsenosides are the main active component with different numbers and positions of sugars, causing different chemical polarities with a challenge for the separation and isolation. In this study, a fast and effective bilinear gradient counter-current chromatography was proposed for preparative isolation ginsenosides with broad partition coefficient range from roots of Panax quinquefolium L. In terms of the established method, the mobile phases comprising n-butanol and ethyl acetate were achieved by adjusting the proportion. Coupled with the preparative HPLC, eleven main ginsenosides were successfully separated, including ginsenoside Rg1 (1), Re (2), acetyl ginsenoside Rg1 (3), Rb1 (4), Rc (5), Rg2 (6), Rb3 (7), quinquefolium R1 (8), Rd (9), gypenoside X VII (10) and notoginsenoside Fd (11), with purities exceeding 95% according to the HPLC results. Tandem mass spectrometry and electrospray ionization mass spectrometry were adopted for recognizing the isolated compound architectures. Our study suggests that linear gradient counter-current chromatography effectively separates the broad partition coefficient range of ginsenosides compounds from the roots of Panax quinquefolium L. In addition, it can apply to active compound isolation from other complicated natural products. This article is protected by copyright. All rights reserved.

Keywords: quinquefolium; roots panax; gradient counter; counter current; isolation; panax quinquefolium

Journal Title: Journal of separation science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.