LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantitative nuclear DNA content and cell cycle analysis of a mixotrophic dinoflagellate by image cytometry

Photo by nci from unsplash

The goal of this work was to develop and demonstrate the utility of microscope‐based image cytometry (ICM) as a method for quantifying nuclear DNA content and cell cycle phase distribution… Click to show full abstract

The goal of this work was to develop and demonstrate the utility of microscope‐based image cytometry (ICM) as a method for quantifying nuclear DNA content and cell cycle phase distribution in microalgae both in culture and in natural blooms, as an alternative to flow cytometry (FCM). To do so, aliquots from the same samples of the dinoflagellate Karlodinium veneficum were examined using both ICM and FCM. ICM specimen preparation and data acquisition methods were optimized to improve precision and agreement between the two techniques. Accuracy and precision of DNA measurements by ICM were significantly higher using the DNA fluorophore DAPI compared to SYBR® Green I. Milli‐Q H2O was found to be superior to Tris‐EDTA as a staining and slide preparation solution for ICM analyses. Lower‐powered objective magnification (10x, 20x) in image acquisition for ICM produced higher precision in nuclear DNA measurements. Overall precision of ICM analysis of DAPI‐stained K. veneficum cells was comparable to FCM, with respective 1C DNA peak coefficients of variation as low as 6.2%. Cell cycle distributions of mid‐log culture samples analyzed by both ICM and FCM were in agreement (two‐way ANOVA; p = 0.93); while distributions analyzed in a field sample were similar but not identical (Z‐test; p < 0.001). Overall, the results show the feasibility of ICM as a useful tool for microalgal cell cycle analysis, with the potential for more flexible application to mixotrophic/phagotrophic species and complex field populations.

Keywords: dna; image; nuclear dna; cell cycle

Journal Title: Limnology and Oceanography: Methods
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.