LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication and Characterization of Recombinant Silk-Elastin-Like-Protein (SELP) Fiber.

Photo by nci from unsplash

Silk-elastin-like-protein polymers (SELPs) are genetically engineered recombinant protein sequences consisting of repeating units of silk-like and elastin-like blocks. By combining these entities, it is shown that both the characteristic strength… Click to show full abstract

Silk-elastin-like-protein polymers (SELPs) are genetically engineered recombinant protein sequences consisting of repeating units of silk-like and elastin-like blocks. By combining these entities, it is shown that both the characteristic strength of silk and the temperature-dependent responsiveness of elastin can be leveraged to create an enhanced stimuli-responsive material. It is hypothesized that SELP behavior can be influenced by varying the silk-to-elastin ratio. If the responsiveness of the material at different ratios is significantly different, this would allow for the design of materials with specific temperature-based swelling and mechanical properties. This study demonstrates that SELP fiber properties can be controlled via a temperature transition dependent on the ratio of silk-to-elastin in the material. SELP fibers are experimentally wet spun from polymers with different ratios of silk-to-elastin and conditioned in either a below or above transition temperature (T t ) water bath prior to characterization. The fibers with higher elastin content showed more stimuli-responsive behavior compared to the fibers with lower elastin content in the hot (57-60 °C) versus cold (4-7 °C) environment, both computationally and experimentally. This work builds a foundation for developing SELP materials with well-characterized mechanical properties and responsive features.

Keywords: silk elastin; protein; selp; elastin like; elastin

Journal Title: Macromolecular bioscience
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.