LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sonodynamic Therapeutic Effects of Sonosensitizers with Different Intracellular Distribution Delivered by Hollow Nanocapsules Exhibiting Cytosol Specific Release.

Photo by sxy_selia from unsplash

Sonodynamic therapy (SDT) is a novel promising noninvasive therapy involving utilization of low-intensity ultrasound and sonosensitizer, which can generate reactive oxygen species (ROS) by sonication. In SDT, a high therapeutic… Click to show full abstract

Sonodynamic therapy (SDT) is a novel promising noninvasive therapy involving utilization of low-intensity ultrasound and sonosensitizer, which can generate reactive oxygen species (ROS) by sonication. In SDT, a high therapeutic effect is achieved by intracellular delivery and accumulation at the target sites of sonosensitizer followed by oxidative damage of produced ROS by sonication. Here, pH- and redox-responsive hollow nanocapsules are prepared through the introduction of disulfide cross-linkages to self-assembled polymer vesicles formed from polyamidoamine dendron-poly(l-lysine) for the efficient delivery of sonosensitizer. As sonosensitizer, doxorubicin (DOX), an anticancer drug accumulating into cell nucleus, is selected. Also, the conjugate of DOX and triphenylphosphonium (TPP-DOX) is synthesized as sonosensitizer with mitochondrial targeting ability. DOX and TPP-DOX are delivered to nucleus and mitochondria by nanocapsules. Furthermore, DOX- or TPP-DOX-loaded nanocapsules exhibit in vitro sonodynamic therapeutic effect to HeLa cells with sonication, which might be through oxidative damage to nucleus and mitochondria.

Keywords: sonodynamic therapeutic; therapeutic effects; dox; effects sonosensitizers; hollow nanocapsules; tpp dox

Journal Title: Macromolecular bioscience
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.