Herein, a bilayer cylindrical conduit (P-CA) is presented consisting of electrospun polycaprolactone (PCL) nanofibers and sodium alginate hydrogel covalently cross-linked with N,N'-disuccinimidyl carbonate (DSC). The bilayer P-CA conduit is developed… Click to show full abstract
Herein, a bilayer cylindrical conduit (P-CA) is presented consisting of electrospun polycaprolactone (PCL) nanofibers and sodium alginate hydrogel covalently cross-linked with N,N'-disuccinimidyl carbonate (DSC). The bilayer P-CA conduit is developed by combining the electrospinning and outer-inner layer methods. Using DSC, as a covalent crosslinker, increases the degradation time of the sodium alginate hydrogel up to 2 months. The swelling ratio of the hydrogel is also 503% during the first 8 h. The DSC cross-linked sodium alginate in the inner layer of the conduit promotes the adhesion and proliferation of nerve cells, while the electrospun PCL nanofibers in the outer layer provide maximum tensile strength of the conduit during surgery. P-CA conduit promotes the migration of Schwann cells along the axon in a rat model based on functional and histological evidences. In conclusion, P-CA conduit will be a promising construct for repairing sciatic nerves in a rat model.
               
Click one of the above tabs to view related content.