The preparation of thermoresponsive mannose functionalized monolayers of poly(N-isopropylacrylamide) microgels and the analysis of the specific binding of concanavalin A (ConA) and E. coli above and below the lower critical… Click to show full abstract
The preparation of thermoresponsive mannose functionalized monolayers of poly(N-isopropylacrylamide) microgels and the analysis of the specific binding of concanavalin A (ConA) and E. coli above and below the lower critical solution temperature (LCST) are shown. Via inhibition and direct binding assays it is found that ConA binding is time-dependent, where at short incubation times binding is stronger above the LCST. Given larger incubation times, the interaction of ConA to the microgel network is increased below the LCST when compared to temperatures above the LCST, possibly due to increased ConA diffusion and multivalent binding in the more open microgel network below the LCST. For E. coli, which presents only monovalent lectins and is too large to diffuse into the network, binding is always enhanced above the LCST. This is due to the larger mannose density of the microgel layer above the LCST increasing the interaction to E. coli. Once bound to the microgel layer above the LCST, E. coli cannot be released by cooling down below the LCST. Overall, this suggests that the carbohydrate presenting microgel layers enable specific binding where the temperature-induced transition between swollen and collapsed microgels may increase or decrease binding depending on the receptor size.
               
Click one of the above tabs to view related content.