LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Film Forming Nanogels for Needle-free Transdermal Vaccination.

Photo by charlesdeluvio from unsplash

Transcutaneous immunization (TCI) provides a valuable alternative approach to conventional vaccination because of the high accessibility and the exceptional immunological characteristics of the skin, but its application is limited by… Click to show full abstract

Transcutaneous immunization (TCI) provides a valuable alternative approach to conventional vaccination because of the high accessibility and the exceptional immunological characteristics of the skin, but its application is limited by the low permeability of the stratum corneum. Although nanogels (NGs) have proven to enhance skin penetration of macromolecules with minimum damage, their use in TCI remains almost unexplored. In this context, this article evaluates the performance of novel film forming NGs (FF-NGs) as TCI. This TCI platform consists of NGs with multilobular morphology that positively combines the properties of crosslinked poly(N-vinylcaprolactam), like thermoresponsiveness and the ability to load and release a cargo, with the film forming capacity of low Tg lobes. FF-NGs and formed films were characterized at different levels. Formed films show to be able to uniformly load an antigenic protein and release it with a profile depending on the temperature and on their FF-NGs content. In-vivo studies have demonstrated that FF-NGs promote the penetration of not only an antigenic protein but also an adjuvant until the immunocompetent area of skin, generating an adjuvant-dependent specific immune response. Finally, this study provides a successful proof of concept that FF-NGs could be a powerful tool for transcutaneous release of complex formulations. This article is protected by copyright. All rights reserved.

Keywords: vaccination; forming nanogels; film forming; needle free; film; nanogels needle

Journal Title: Macromolecular bioscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.