The rise of the novel virus SARS-CoV2 which causes the disease known as COVID-19 has led to a global pandemic claiming millions of lives. With no clinically approved treatment for… Click to show full abstract
The rise of the novel virus SARS-CoV2 which causes the disease known as COVID-19 has led to a global pandemic claiming millions of lives. With no clinically approved treatment for COVID-19, physicians initially struggled to treat the disease and there is still need for improved anti-viral therapies in this area. We conceived early in the pandemic that an inhalable formulation of the drug Remdesivir which directly targets the virus at the initial site of infection could improve therapeutic outcomes in COVID-19. We developed a set of requirements that would be conducive to rapid drug approval: 1) try to use GRAS or GRAS similar reagents 2) minimize excipient concentration and 3) achieve a working concentration of 5 mg/mL Remdesivir to achieve a deliverable dose which is 5-10% of the IV dose. In this work, we discovered that Poly(2-oxazoline) block copolymers can stabilize drug nanocrystal suspensions and provide suitable formulation characteristics for aerosol delivery while maintaining anti-viral efficacy. We believe POx block copolymers can be used as a semi-ubiquitous stabilizer for the rapid development of nanocrystal formulations for new and existing diseases.
               
Click one of the above tabs to view related content.