There is a growing realization that 3D cell culture better mimics complex in vivo environments than 2D, lessening aberrant cellular behaviours and ultimately improving the outcomes of experiments. Chemically cross-linked… Click to show full abstract
There is a growing realization that 3D cell culture better mimics complex in vivo environments than 2D, lessening aberrant cellular behaviours and ultimately improving the outcomes of experiments. Chemically cross-linked hydrogels which imitate natural extracellular matrix (ECM) are proven cell culture platforms, but the encapsulation of cells within these hydrogel networks requires bioorthogonal cross-linking chemistries which can be cytotoxic, synthetically demanding and costly. Capsular antigen fragment 1 (Caf1) is a bacterial, polymeric, fimbrial protein which can be genetically engineered to imitate ECM. Furthermore, it can, reversibly, thermally interconvert between its polymeric and monomeric forms even when chemically cross-linked within a hydrogel network. We demonstrate that this meltable feature of Caf1 hydrogels can be utilized to encapsulate neonatal human dermal fibroblasts at a range of cell densities (2 × 105 - 2 × 106 cells/mL of hydrogel) avoiding issues with chemical cytotoxicity. These hydrogels supported cell 3D culture for up to 21 days, successfully inducing cellular functions such as proliferation and migration. This work is significant because it further highlights the potential of simple, robust, Caf1-based hydrogels as a cell culture platform. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.