LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent Advances in Polysaccharide-Based Physical Hydrogels and Their Potential Applications for Biomedical and Wastewater Treatment.

Photo from wikipedia

Polysaccharides have been widely employed to fabricate hydrogels owing to their intrinsic properties including biocompatibility, biodegradability, sustainability, and easy modification. However, a considerable amount of polysaccharide-based hydrogels are prepared by… Click to show full abstract

Polysaccharides have been widely employed to fabricate hydrogels owing to their intrinsic properties including biocompatibility, biodegradability, sustainability, and easy modification. However, a considerable amount of polysaccharide-based hydrogels are prepared by chemical crosslinking method using organic solvents or toxic crosslinkers. The presence of reaction by-products and residual toxic substances in the obtained materials cause a potential secondary pollution risk and thus severely limited their practical applications. In contrast, polysaccharide-based physical hydrogels are preferred over chemically derived hydrogels and can be used to address existing drawbacks of chemical hydrogels. The polysaccharide chains of such hydrogel are typically crosslinked by dynamic non-covalent bonds, and the co-existence of multiple physical interactions stabilize the hydrogel network. This review focuses on providing a detailed outlook for the design strategies and formation mechanisms of polysaccharide-based physical hydrogels as well as their specific applications in tissue engineering, drug delivery, wound healing, and wastewater treatment. The main preparation principles, future challenges, and potential improvements are also outlined. The authors hope that this review could provide valuable information for the rational fabrication of polysaccharide-based physical hydrogel. The specific research works listed in the review will provide a systematic and solid research basis for the reliable development of polysaccharide-based physical hydrogel. This article is protected by copyright. All rights reserved.

Keywords: based physical; polysaccharide based; wastewater treatment; physical hydrogels

Journal Title: Macromolecular bioscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.