Biocompatible hydrogels have been considered one of the most well-known and promising in the various materials used in the fabrication of tissue-engineering scaffolds. Although considerable progress has been made in… Click to show full abstract
Biocompatible hydrogels have been considered one of the most well-known and promising in the various materials used in the fabrication of tissue-engineering scaffolds. Although considerable progress has been made in recent decades, many limitations remain, such as poor mechanical and degradation properties of biomaterials. In addition, vascularization of tissue-engineering scaffold is enduring challenge, which limited the fabrication and application of scaffold with clinically relevant dimension. To cover these challenges, in this work, a novel nanocomposite interpenetrating polymer networks (IPN) hydrogel scaffold consists of methacrylated gelatin (GelMA), poly(vinyl alcohol) (PVA) and copper oxide nanoparticles (CuONPs) was fabricated by extrusion-based 3D printing and contained favorable biological and physicochemical properties, such as mechanical, degradation, and cytocompatibility properties, particularly conducive to angiogenesis in the scaffold. A series of physiochemical and biological characterizations of the photo-crosslinked and hydrogen-bonded crosslinked IPN scaffolds were performed. Results showed that the mechanical and degradation properties of the nanocompsite GelMA/PVA scaffolds were obviously improved compare to GelMA scaffolds with single network. In vitro cell experiments and a chick embryo angiogenesis (CEA) assay confirmed good cytocompatibility of the fabricated scaffold with adipose-derived stem and human umbilical vein endothelial cells and its potential to promote cell migration and angiogenesis. In conclusion, all together of results demonstrated that GelMA/PVA IPN scaffolds modified with CuONPs have great potential for fabrication of volumetric scaffolds and promote angiogenesis during tissue growth and repair. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.