LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D printing GelMA/PVA interpenetrating polymer networks scaffolds mediated with CuO nanoparticles for angiogenesis.

Photo by flyd2069 from unsplash

Biocompatible hydrogels have been considered one of the most well-known and promising in the various materials used in the fabrication of tissue-engineering scaffolds. Although considerable progress has been made in… Click to show full abstract

Biocompatible hydrogels have been considered one of the most well-known and promising in the various materials used in the fabrication of tissue-engineering scaffolds. Although considerable progress has been made in recent decades, many limitations remain, such as poor mechanical and degradation properties of biomaterials. In addition, vascularization of tissue-engineering scaffold is enduring challenge, which limited the fabrication and application of scaffold with clinically relevant dimension. To cover these challenges, in this work, a novel nanocomposite interpenetrating polymer networks (IPN) hydrogel scaffold consists of methacrylated gelatin (GelMA), poly(vinyl alcohol) (PVA) and copper oxide nanoparticles (CuONPs) was fabricated by extrusion-based 3D printing and contained favorable biological and physicochemical properties, such as mechanical, degradation, and cytocompatibility properties, particularly conducive to angiogenesis in the scaffold. A series of physiochemical and biological characterizations of the photo-crosslinked and hydrogen-bonded crosslinked IPN scaffolds were performed. Results showed that the mechanical and degradation properties of the nanocompsite GelMA/PVA scaffolds were obviously improved compare to GelMA scaffolds with single network. In vitro cell experiments and a chick embryo angiogenesis (CEA) assay confirmed good cytocompatibility of the fabricated scaffold with adipose-derived stem and human umbilical vein endothelial cells and its potential to promote cell migration and angiogenesis. In conclusion, all together of results demonstrated that GelMA/PVA IPN scaffolds modified with CuONPs have great potential for fabrication of volumetric scaffolds and promote angiogenesis during tissue growth and repair. This article is protected by copyright. All rights reserved.

Keywords: interpenetrating polymer; polymer networks; gelma pva; pva; angiogenesis

Journal Title: Macromolecular bioscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.