Polyelectrolyte microcapsules based on sodium cellulose sulfate (SCS) and poly-diallyl-dimethyl-ammonium chloride (PDADMAC) have previously been proposed as a suitable ex vivo microenvironment for the cultivation and differentiation of primary human… Click to show full abstract
Polyelectrolyte microcapsules based on sodium cellulose sulfate (SCS) and poly-diallyl-dimethyl-ammonium chloride (PDADMAC) have previously been proposed as a suitable ex vivo microenvironment for the cultivation and differentiation of primary human T lymphocytes. Here, the same system is investigated for the cultivation of human primary B cells derived from adult tonsillar tissue. Proliferation and differentiation into subtypes were followed and compared to suspension cultures of B cells from the same pool performed in parallel. Total cell expansion was somewhat lower in the capsules than in the suspension cultures. More importantly, however, the differentiation of the initially mainly memory B cells into various subtypes, in particular into plasma cell (PC), showed significant differences. Clearly, the microenvironment provided by the microcapsules is beneficial for an accelerated induction of a germinal center-like B cell phenotype and afterward supports the long-term survival of the PC cells. Then, varying the encapsulation conditions (i.e., presence of human serum and dedicated cytokines in the capsule core) provides a tool for finetuning the B cell response. Hence, this methodology is suggested to pave the way toward ex vivo development of human immune organoids. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.