LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fluid‐Induced Alignment of Carbon Nanofibers in Polymer Fibers

Photo from academic.microsoft.com

Carbon nanofiber/polycaprolactone (CNF/PCL) composite fibers are fabricated using a microfluidic approach. The fibers are made with different content levels of CNFs and flow rate ratios between the core and sheath… Click to show full abstract

Carbon nanofiber/polycaprolactone (CNF/PCL) composite fibers are fabricated using a microfluidic approach. The fibers are made with different content levels of CNFs and flow rate ratios between the core and sheath fluids. The electrical conductivity and tensile properties of these fibers are then investigated. It is found that at a CNF concentration of 3 wt%, the electrical conductivity of the composite fiber significantly increases to 1.11 S m−1. The yield strength, Young's modulus, and ultimate strength of the 3 wt% CNF increase relative to the pure PCL by factors of 1.72, 2.88, and 1.23, respectively. Additionally, the results show that a microfluidic approach can be considered as an effective method to align CNFs along the fibers in the longitudinal direction.

Keywords: induced alignment; carbon; alignment carbon; fluid induced; nanofibers polymer; carbon nanofibers

Journal Title: Macromolecular Materials and Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.