LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Impact Polyamide Composites with Linear Ethylene-Norbornene Anhydride Copolymers from Insertion Polymerization

Photo from wikipedia

Toughening of polyamide 66 with novel linear norbornene anhydride functionalized polyethylenes leads to an impact performance in the Charpy-notch impact testing at 23 °C and −30 °C as high as… Click to show full abstract

Toughening of polyamide 66 with novel linear norbornene anhydride functionalized polyethylenes leads to an impact performance in the Charpy-notch impact testing at 23 °C and −30 °C as high as aCN = 18.0 ± 1.0 and 13.7 ± 0.8 kJ m−2, respectively, which compares favorably to a state of the art functional low density polyethylene (LDPE) from high-pressure copolymerization with a Charpy-notch impact strength of aCN = 16.8 ± 0.0 and 13.8 ± 2.1 kJ m−2 at 23 and −30 °C, respectively. The linear copolymers are obtained by insertion polymerization at mild ethylene pressures of 5 to 15 bars with phosphinesulfonato Pd (II) catalysts, to yield linear copolymers with norbornene anhydride incorporations as high as 4.8 mol% along with a polymer molecular weight of >105 g mol−1. Furthermore, the norbornene anhydride functionality serves as a reaction site for postpolymerization functionalization with alcohols to obtain the respective half- and diesters of the anhydride functionality. Notably, the impact performance is improved with the increase of the alkyl chain length and degree of branching of the ester functionality in the order methanol < n-butanol < 2-ethyl hexanol from 10.0 to 13.8 kJ m−2.

Keywords: norbornene anhydride; impact polyamide; impact; high impact; insertion polymerization

Journal Title: Macromolecular Materials and Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.