LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A T1 theorem and Calderón–Zygmund operators in Campanato spaces on domains

Photo by twincentsen from unsplash

Given a Lipschitz domain D⊂Rd , a Calderón–Zygmund operator T and a modulus of continuity ω(x) , we solve the problem when the truncated operator TDf=T(fχD)χD sends the Campanato space… Click to show full abstract

Given a Lipschitz domain D⊂Rd , a Calderón–Zygmund operator T and a modulus of continuity ω(x) , we solve the problem when the truncated operator TDf=T(fχD)χD sends the Campanato space Cω(D) into itself. The solution is a T1 type sufficient and necessary condition for the characteristic function χD of D: (TχD)χD∈Cω∼(D),whereω∼(x)=ω(x)1+∫x1ω(t)dt/t.

Keywords: theorem calder; calder; calder zygmund; zygmund operators; operators campanato

Journal Title: Mathematische Nachrichten
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.