LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Overcome the Conflict between Strength and Toughness in Poly(lactide) Nanocomposites through Tailoring Matrix-Filler Interface.

Photo from wikipedia

Strength and toughness are the two most important prerequisites for structural applications. Unfortunately, these two properties are often in conflict in materials. Here, an effective and yet practical strategy is… Click to show full abstract

Strength and toughness are the two most important prerequisites for structural applications. Unfortunately, these two properties are often in conflict in materials. Here, an effective and yet practical strategy is proposed to simultaneously strengthen and toughen poly(l-lactide) (PLLA) using a simple rigid-rubber "reinforcing element." This element consists of a rigid graphene oxide (GO) sheet covalently coupled with poly(caprolactone-co-lactide) (PCLLA) rubbery layers, which can be easily synthesized and incorporated into PLLA matrix to develop composites with well-tailored GO/PLLA interfaces. It is demonstrated that by adding the "reinforcing element," i.e., GO-graft-rubber-graft-polyd-lactide), PLLA exhibits higher strength and higher toughness, which could be attributed to the synergy of rigid GO and rubbery PCLLA working in tandem during deformation. It is further demonstrated that this strategy can also be applied to other filler systems, such as clay and particulate polyhedral oligomeric silsesquioxane, and other polymer systems, such as poly(methyl methacrylate). The strategy could be considered as a general design principle for reinforcing materials where both strength and toughness are the key concerns.

Keywords: strength; poly lactide; strength toughness; plla; toughness

Journal Title: Macromolecular rapid communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.