LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Theoretical Model of Time-Temperature Superposition Principle of the Self-Healing Kinetics of Supramolecular Polymer Nanocomposites.

Photo by jontyson from unsplash

The matrix-free polymer nanocomposites (PNCs) formed by polymer-grafted nanoparticles(NPs) gain enormous attention due to their controllable morphology and robust properties. Herein, through molecular dynamics simulation, such PNCs are successfully constructed,… Click to show full abstract

The matrix-free polymer nanocomposites (PNCs) formed by polymer-grafted nanoparticles(NPs) gain enormous attention due to their controllable morphology and robust properties. Herein, through molecular dynamics simulation, such PNCs are successfully constructed, and the dispersion state of the NPs can be tailored by varying the grafting density. By manipulating the interaction strength between the end groups of the grafted polymer chains, the tensile fracture behavior and the chain orientation are examined. It is revealed that both of them fall down at large strain because of the propagation of the cavities. By probing the self-healing kinetics at various self-healing temperature and time, a time-temperature superposition principle, similar to the Williams, Landel and Ferry equation, is proposed. These results could provide some fundamental guidelines for the design and fabrication of high performance PNCs with excellent self-healing functionality.

Keywords: polymer nanocomposites; temperature; time; polymer; self healing

Journal Title: Macromolecular rapid communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.