LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental Methods for Characterizing the Secondary Structure and Thermal Properties of Silk Proteins.

Photo from wikipedia

Silk proteins are biopolymers produced by spinning organisms that have been studied extensively for applications in materials engineering, regenerative medicine, and devices due to their high tensile strength and extensibility.… Click to show full abstract

Silk proteins are biopolymers produced by spinning organisms that have been studied extensively for applications in materials engineering, regenerative medicine, and devices due to their high tensile strength and extensibility. This remarkable combination of mechanical properties arises from their unique semi-crystalline secondary structure and block copolymer features. The secondary structure of silks is highly sensitive to processing, and can be manipulated to achieve a wide array of material profiles. Studying the secondary structure of silks is therefore critical to understanding the relationship between structure and function, the strength and stability of silk-based materials, and the natural fiber synthesis process employed by spinning organisms. However, silks present unique challenges to structural characterization due to high-molecular-weight protein chains, repetitive sequences, and heterogeneity in intra- and interchain domain sizes. Here, experimental techniques used to study the secondary structure of silks, the information attainable from these techniques, and the limitations associated with them are reviewed. Ultimately, the appropriate utilization of a suite of techniques discussed here will enable detailed characterization of silk-based materials, from studying fundamental processing-structure-function relationships to developing commercially useful quality control assessments.

Keywords: methods characterizing; experimental methods; secondary structure; silk proteins; structure; structure silks

Journal Title: Macromolecular rapid communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.